

"Hangs" and Bottom Obstructions of the Mississippi/Alabama Gulf

Loran C

'LOAN OOP ONE:

Compiled by

GARY L. GRAHAM
Marine Fisheries Specialist
Sea Grant College Program and
Texas Agricultural Extension Service,
Texas A\&M University
DAVID VEAL
Program Leader
Mississippi Sea Grant Advisory Service, Mississippi Cooperative Extension Service, Mississippi State University

BILL HOSKING
Coordinator and Marine Economist Sea Grant Advisory Service, Auburn University

NATHONAL SEA GOANT DEPOGTGRY PELL LBRAGY BUALOMO
URI, NARRAGADETI BYY CAMPIS NAROAGAHSET, RI COE

Reproduction of any part of this book is prohibited without prior approval from publishers, the Texas A\&M University
Sea Grant College Sea Grant College Program. 91983.

Additional copies of this publication are available from:

The Marine Information Service, Sea Grant College Program, Texas A\&M University, College Station, Texas 77843
Mississippi Sea Grant Advisory Service, 4646 W. Beach Blvd., Suite 1E, Biloxi, Mississippi 39531
Alabama Sea Grant Advisory Service, 3940 Government Blvd, Mobile, Alabama 36609
TAMU-SG-83-505
TM 6/83
NA81AA-D00092
A/F-4

PREFACE

This book is dedicated to our friends, the fishermen of the Gulf of Mexico without whose cooperation its production would not have been possible. This collection of information is made available from the Sea Grant programs and Cooperative Extension services of Texas A\&M University, Mississippi State University and Auburn University.

This book is not nearly complete. It represents the first effort to accumulate and disseminate locations of bottom fishing obstructions in shrimping grounds from the Southwest Pass of the Mississippi River to Alabama. Continuing efforts will be made to obtain additional Loran coordinates of hangs and to revise existing data. Your assistance with this ongoing project will be significantly appreciated.

This information was obtained by fishermen often under stress due to weather, strenuous work, and anticipation of lost fishing gear. It is temarkable that the readings are as accurate as they seem to be.

THE ACCURACY OF THIS BOOK

All readings in this book are actual Loran C coordinates and do not represent conversions from previously obtained Loran A readings.

When working from this book, readings should be compared on charts due to necessary distortions this cataloguing technique may impose. Due to ridges and irregular depth curvatures in the Gulf, it is possible for a shallower reading to be found farther offshore than a deeper reading.

Ordinarily, visible obstructions and a very large percentage of announced oil company caps and completions are not included.

Several factors concerning accuracy should be noted. It is extremely difficult to know when a hang has been moved. Also some readings may be mud hangs instead of obstructions and it is sometimes quite difficult to differentiate between the two. Every attempt was made in the accumulation of this information to omit mud hangs, unless a number of vessels could be affected by them. Most mud readings that are intentionaliy included are so designated.

A hang may have several different, but close, readings. Several fishermen may have reported the same obstruction with slightly different Loran fixes. The variation of these readings is very valuable for confirmation purposes.

If the difference of readings on the X secondary (29000 line) equals 2.0 microseconds or less and corresponding cross readings are similar, the readings are considered the same. Limits are also placed on coordinates of the Y secondary (46000 line). If the difference of readings on the Y secondary equals 0.4 microseconds or less and cross readings are similar, these readings are considered the same. The various readings of a hang will appear adjacent to the original reading at which it was logged.

The gradients of a Loran line are of particular importance when designating several readings as a similar hang; furthermore, the gradients are important when giving an obstruction berth. The amount of area covered by 0.1 of a microsecond on the X secondary equals approximately 50 feet in regions included in this book. The gradients of the Y secondary range from approximately 115 feet for 0.1 microsecond offshore of Mobil Bay to approximately 150 feet per 0.1 microsecond off the Mississippi Sound.

TECHNICAL INFORMATION ON LAYOUT

Each set of facing pages represents 100 microseconds of the X secondary of the 7980 Loran C GRI. The book begins with the 28700 tine of the X secondary off of the Southwest Pass of the Mississippi River and progresses east to the 29800 line off of Alabama.

Each page is divided into five columns. Each column represents 10 microseconds of
the X secondary, which is designated at the outside corner of the page. Located vertically along the outer margin of each page are numbers representing the depth of water in fathoms. The cross reading in the form of the Y secondary appears after the
initial X coordinates and depth.

THE * DESIGNATION

Depths listed in this book are obtained by plotting reported hang coordinates on charts. Due to significant depth irregularities, it is impossible to obtain accurate soundings off the Mississippi River from charts. Accurate depths cannot be obtained for designation of \otimes is used in place Chandeleur Sounds. To compensate for this, the readings, as no system has been developed th. Special care should be taken with these cases, coordinates are listed in relation to their compensate for this problem. In most uniformity in depth contours, i.e. shallower readings to other hangs. The lack of presents problems with this cataloguing system. The offshore, deeper readings inshore, special precautions to compensate for this irregularity.

ACKNOWLEDGEMENTS

Gratitude is expressed to the following fishermen for donating their time and information for this publication.

Capt. Mark Bates
Capt. Vernon Bates, Jr.
Capt. Donnie Collier
Capt. Country
Capt. Vernon
O. S. Rhonda Kathleen
O. S. Capt. Ty
Capt. Len Jones
Capt. Tommy Kiff
Capt. Owen Olano
Capt. Bobby Pendauvis
Capt. Chuck Peyregne
Capt. Tommy Schultz
O. S. Lady Hamilton III
O. S. Rosa
O. S. Mr. Wayne
O. S. Barbara Ann
O. S. Sun Star
O. S. Capt. Elwood
O. S. Reva Rose
Capt. Thomas Silver
O. S. Miss Jeannie
Capt. Chris Steiner
O. S. Cynthia Diane
Capt. Jerry Steiner
O. S. Lady Frances

READING THE CHARTS

ex - reading thought to be exact

M - BROKEN BOTTOM
H - hole
TH - TOE HEAD
Wr - WRECK
R - ROCK
Cor - CORAL
(30) -- FATHOM
(110) - FEET

C - CAPPED WELL
App - APPROXIMATE
62.37
$46759.8^{62.3}$ - EXTENSION OF BAD BOTTOM 11059.8 THROUGH 11062.3
60.1
46759.8) - DIFFERENT READINGS OF THE SAME HANG (Confirmation)

Smestionable READING
$\phi-$ actual loran c reading taken, not a conversion

28700					
L	$0-9,9$	10-19,9	20-29.9	30-39.9	40-49.9
2	28707.0 (3) 46861.9			28733.9 (2144 428.57 .8	
3	28707.8 (36) 46860.4	28718.9 (3)468622.8		2813.9 24 +eas 2.8	28746.5 3 46845.9
4	287067 (4) 46858.0	28718.1 37446857.6			2876.5 (3) 6845.9
5 -					
6				$28733.0(6) 46797.0$	
7					
8		28714.2 (8) 46792.7			
9		$28710.7 \text { (9) } 46795.6$	22872509346792		
10	28701.4 (8)46802.4		498	287396 (846787.6	
12					
13				. 0 . ${ }^{\text {a }}$	28744.8 (146785.4
14					28745.3@46784.9
1					
16		2874.8(X)46787.9			
18				$28736.6 \times(1) 46755.7$	
19					
20					
21					
22					
23					
24			28726.9(25) 46717.6		
25			287269 (35) 46779.6		
26			28725.4() 4167648		28745.00 $\times 16750.0$
27					
28		$28719.9(8) 46773.5$	$28721 . \frac{2}{9} \times 1 \times 6767.2$	28733.6(28)460748.3	
29				28737.204 .6747 .3	
30					
31	28700.8 (3) 46775.0				
32					
34	29703.4 (0)46750.6				
35	28702.1 8 (14.751.6				
36	28702.8(1) 46751.2				
37					
38					
39				287373 (x)46786.0	
41					
42					
4344					
45					
46				28730.4 (42) 46727.4	
47					
48					
49					
50			$28727.1 \times+6705.9$		8741.804 .40722 .6

				28700	
$50-59.9$	$60-69,9$	70-79,9	$80 x^{3} 89.9$	90-99,9	
		28778.3 ($)+46763.3$		28791.1004 .879 .4	1
28750.9(2)46854.6	28765.3 146761.7	287741846			2
28756.022.46.851.8	28769,6 (0) 46770.3	2977.6.6 (3) 48776.0846 .3 46845.2	$28787.3(8) 4 L^{\text {S }}$		3
		28775.2 (5) 46823.7		28798.4 (4)4.795.4	4
28755.6. (2) 46765.7		$28719.4(5) 46784.6$		18792.1(5) 46799.4	5
28759,3(6)46802.8	3746540	$28770.5(5) 46802.0$		28790.4(8) 46.774 .5	6
28751.6(b) +6823.4		28775.0(x) 46.7770			7
		297724546762.0			8
		28777.16 46759.8			9
28758.6(10) 46755.0					10
					11
					12
28755.0 () 46768.8				$28791.1(8) 46759.8$	13
28759, (14) 467773	28761.5(14)46777.2				14
	28760.3 (14)46776.6				15
	28765.0 (8) 46776.6				16
$28750.81817{ }^{16767773}$	O^{2}				17
					18
	28760.0(8)46772.0				19
			28786.4 (8)467571		20
	28760.3(3) 46.752 .5		- =		21
					22
					23
					24
	28765.3(8)407516				25
	2876600046756				26
	28761.8(8)467504				27
					28
					29
	28762.1()46746.2				30
28756.3() 46744.3					31
					32
					33
					34
					35
					36
					37
					38
					39
					40
					41
					42
					43
					44
					45
					46
					47
					48
	28766.9(1)46725.1				49
	2876400446716.6				50

	29000				
	0-9.9	10-19,9	$20-29,9$	30-39,9	40-49, 9
1	29005.8 (4)46890.0	29017.3 8 46923.2	29023.0 8046908.0	$29032.0(8) 46919.8$	2904388146220
2	29007. (4)44878.6		29029.018469010	29033.5(3)46885,5	29044.50 .46915 .0
3	$290065(8) 468777$		29023,2(X) He884.35	29035,54 (8) 46888.70	$29042.0 \times 8) 46912.2$
4			$290294 \otimes 4.893 .2$	29033.0 (X) 46881.0	29045.0 (x) 46914.0
5			29030.2 Q $^{4} 46882.5$	29034.1 (42) 46.875 .8	$\begin{aligned} & 29845.5846040 .0 .5 \\ & 4042084607 \end{aligned}$
7			2902718 (X)4.8882,57	29036.3. (44)46873.1	
7			29024.2 (49)46879.3	29033.6 (7) 46849.0	$29043.50 \times 46880^{4}, 4$
8			29021.0 (4) 468975.7		29044.13846880.97
9			29024.5 [424 46872.9		29043.7) 46976.5
10					
11		1 RRETON SOUND AREA \uparrow			
12		29018.1(4) 460783.4			290417) (11) 46782.5
13					
17					
20	29005.4 (8)46773.5				
21					
23					
24					
26					
				29031.0(8)46773.5	
28					
29					
30					
3132					
33					
				29038.4(34) 46769.9	
35				2038,	
3637					
3839					
40					
42					
4					
46					
47					
48					
49					
50					

				29000	
$50-59,9$	60-69, 9	70-79.9	80-89,9	$90-99,9$	
29050.0(8)46920.0	29065.2 (X)46488.5	29078.6 (0)46912.5	29089.8(8) 469174.47	290943 (1)46.923.0	1
29055.5(8) 46.915 .8	$29063^{1.0} 0^{10}(8) 46916.0$	290740 (23) 4088100	29083.3801046413 .52	29095.5(18)4.878.0	2
29053.0 (8) 4.975.0	$290615 Q+69140$	29072.6 (3) 46884.7.	$29083.0 \times 2 \times 4.8871^{\circ}{ }^{\circ} 9$	29090.3()$^{2} .468 .35 .0$	3
	29063.0 () 46912.5		29094.72) (5) 46870.2		4
29055.8®46912.4				$29097.6(5) 468479$	5
29058.2814.4609.4		29075.9, 3 3 46875.5			6
21031.98048585 4	290660.0 34%) 468770	29075.3 (4) 46.873.5			7
24057.5,	29065.0 (480 46875.5				8
29054.0 34.44879 .70	290621.18 - 46846.5				9
	29066.7, ${ }^{7}(1) 40855.5$				10
29056. 7 (5) 4.8874 .8					11
					12
	\uparrow ARE	ON SOLIND ARER	\uparrow		13
$29057.8(8)^{7} 46839.6$		29071.3 (8)46811.3	29080.5 (8)46798.6		14
29051.0 739 46788.0		29072.2046798.0			15
		29077.3 (73) 46795.5			16
		$29073^{1.2}{ }^{2}(4) 46792^{\circ} 6$			17
	29066.6				18
					19
					20
					21
					22
					23
					24
	29069.9 (0)46738.1				25
	29067.0 (8) 46737.0				26
					27
					28
					29
					30
					31
					32
					33
					34
					35
					36
					37
					38
					39
			29085,5 (4) 46777.9		40
					41
					42
					43
					44
					45
					46
					47
					48
					49
					50

29100					
	0-9, 9	10-19.9	20-499, 9 gex	30-39.9	40-49.9
		29117.646904 .6			
2	291071 (0)46891.8	2918.6 (84885.8		(e)	
	291000. (3) 3 4 4873.0	291151 84468851			
4	2910760.4888 .215	2919.6 (0) 44876.9			
	29104,9.840835.3,	2911, (8) 4.884.4		29131.7(4)46879.6	
	290000 (54)46865:0	2910.3.0. 46842.2		29133.0 (5) 4.8875 .5	
	24109.30746853 .9	2913.7. 4.4838 .3	29124.6 (9)468671	29137i) (5) 54.88929	29140.7 (7)46846.5
		2910.7 ${ }^{291}$	$\frac{29,25.8}{2 \times 2.8} 8$		
10		29111 (3) 46834.4	3140. 3 \% 4 4atara		2945
11				2135ide 4nsity	
12			29126. $3 \times 44681 / 3$	29135,	
13				,	
14					91460.0846853 .8
15			29128.4 (1)46808.5		
16			29128,0(1)46805.5	2913, 716342812.53	2940.0.9 4 4 340.5
17				29353.3 (15) 4 46813.9	
18				29735.3 (0) +684.9	2914.9 (4)46832.6
19					2914.8.8(5) 468129
21					
22				2913,7 7 (27)468049	
25					
				$2438.9(83) 46803.5$	
27	29102, (97467948		97125.8 (26) 46799.0		
28					
29					29,40,68(468802.9
30					2940.68846802.9
31 32					
32 33					
34					
35					
36					
37					
38					
$\begin{aligned} & 39 \\ & 40 \end{aligned}$					
41					
42	29103.6.6446782.5				
43					
$\left\lvert\, \begin{aligned} & 44 \\ & 45 \end{aligned}\right.$					
$\left\lvert\, \begin{aligned} & 45 \\ & 46 \end{aligned}\right.$					
47					
48					
49 50					

50-59.9	60-69.9	70-79,9	80-89.9	90-99.9
	29267718470659	2927355847065:8	2928610.4050599	2929900847059.0
29750.28)46998,4		2927358470047		2
	292610×4468909			
				2399, +(9)4697, ${ }^{\text {a }}$
				-
				2929, 8 (1)46873,
		29275, (3)4686989	$29855.9(5) 46868.2$	
2925.0 (2)448550				
		$292725674.852,8$		
29259.08469510				
		292778(3)46380,		29290.0 3 P64825:6
		28970.6(3)4 46321.5		
			2989971 (9)40817.9	
-				

乩	29300				
$\stackrel{1}{4}$	\& $\quad 0-9,9$	10-19.9	20-29.9	30-39, 9	40-49.9
	1293019×4780573	393150847053,0	529329.0847046		29345.08447059 .8
2		29333.0 8177047.5	529322.60 (8) 4704.4		29348.20842046
	2930144184704960	299313.0 (846995.1	$129339.62^{2} 847023$.		29341.4 (472030.
	\%		29328.6847023.		29340.3 $\otimes 470276$
			29323.98847019 .6	6, 2933 3,	
			29330.7844017.	72933666804704720	
8	8		293.374847004 .3	329334.4847003 .8	
		1 CHANDELEU	29328.88470	2933.28446996.5	
${ }^{9}$			Sund AR		
1112					
131414					
15					
16					
16 18 18					29347.4(0446881.5)
18					29347.4 (046881.3)
19					
20					
21					
22					
23					
25					
25					
30 31 31					
31 32 32				29335.03846847.6	
32 33			29324.0(3)468410	2935.0 3646847.6	29343.263246850.8
35 36					$293455^{\circ} 2 \times 3946834.8$
373838					
	29309.8 (3)46813,7			2933.3(37)48824.0	
39 40					
40 41					
42					
$4{ }_{4}^{42}$					
4	29302, 2(4)464604.3	2312.0(4)468802.7			
$\begin{aligned} & 44 \\ & 45 \end{aligned}$					
47					
48					
49 50					
50					

50-59, 9	60-69, 9	70-79.9	80-89. 9	90-99, 9
	29369.8 (840710	29372.7847053.4	293869 8170688.7	
29358.1 $\otimes 47028.0$	293672 $\otimes 47069.4$	$29375.4 \otimes 470490$	19384, 3 (874062.8	39395.6047059 .8
29558.0 (4694.0.	29369.4 © 47066.4			39399.647034 .9
	29365.784704 .8			29390, ه470330
			29386.4.447048,	
			2938000847047.5	
			29388.50446988.5	
\uparrow	CHANDELEUR	CAT ISLAND A	REA \uparrow	
				29390.50946923 .5
				293908 (2)46883.8
	29367.6 (3)46339.5			
29352.0(3) +6835.7	27364.1 (3) 46835.8	$293700^{6} 2 \times 3468396$		

	29400				
	$0-9,9$	10-19, 9	20-29,9	30-39,9	40-49,9
1	29402.7047076E			29438.7 (8)470710	
2	29408.6 ()47066.5				
3	29408.6 (3)47064.6				29447.7 (4)47070.3
4	29405,2 2 年47056.5		29429.3 (4)47061.8)	$294.38 .4 \times 3) 47062.8$	2944.71.75 (1)47062.5
5					
6	29407.3.8.46925.23		$29423.7647042,9$	29433.1(0)47050.1	294471 (8469979
7			$29420.0(0) 47042.4$	29435.9 (24) 47044.5	
8		29413.9 (8)46948.5		29438.0.() 410000	29444.5(8)46973.3
9		29411.3 (8) 469250		29433.59746960 .1	29447.0 (9) 46956.0
10				29433.7946955 .3	29449.4(9) 46952.3
11					
12					
13					
14					
15					
16					29440.0 (10)46905.0
17					
18					
19					
20					
21				\because	
22					
23					
24					
25					
26					
27					29441.7 (X) 46886.7
28					
29					29449.0 (69)46875.6
30					$29446.4(31) 46869.2$
31					$29444.7)(31) 46867.7$
32					
33		29419, (33)46832.8	29423.43(33)46844. ${ }^{\circ}$		
34			29425.0 (3) $4684.2 .^{\circ}{ }^{\circ}$		
35	$29407.4(3546834.8$				
36		$29419.3 \text { (36)46829.9 }$			
37					
38		29417.0 (30)46826.6			
39					
40			29425.0 (40)46819.0		
41					
42					
43					
44					
45					
46					
47					
48					
49					
50				$29439.5(55)^{808618.3}$	

				29400	
50-59, 9	60-69.9	70-79, 9	80-89, 9	90-99, 9	
		29470.04847075 .0	29483.4(8)47083.4		1
		29472.9 (0) 7070.3			2
$29451.8(33 / 4) 47028.5$		29477.2 (1)470691	$29 \times 83.4 \times 847068.0$		3
29450.9(8) 477018.2		29473.9 (x) 47088.2	$29483.7847069{ }^{\circ}$		4
		$29477^{\circ} 1^{\circ}(8) 47070.3$	19487:0 $0^{\circ} 47070.6$		5
	294616 (69) 7862.3	$29477^{2} 4^{2}(647068.0$ $29478.15{ }^{2} 470^{6} 0^{\circ} .{ }^{8}$ 2947.3	$24489.8(5) 47059.5$ $29484.26) 47059,2$ 294889647035.5	$\begin{aligned} & 29496.5(\mathrm{bl7}) 47071.8 \\ & 29490.1(634) 47059.0 \end{aligned}$	6
		29472.9 (6) 47061.8		$29494.0 \widehat{7} 47050.1$	8
294520 (9)469599		29479.2 (49)47058.5	29489.394469172		9
29453.0(9)4099530.0	294469.5 10×46964.5				10
29453.7 (1) 46944.6		29478.1 (1) 46978.1		29490.\%(1)46987.8	1
					3
					4
					5
		29474.4 (13) ${ }^{3} 463,0$			6
					7
				29493,7(18)46922,3	8
					0
				29493.5®0446894.0	
				29494.0 (27)468878	
				19491.0 (79) 46884.6	
29459.7(29)410880.4			$29480.73 \sqrt{29} 46859.7$	$42493.76946885 .7$	
		29478.6 (30\%)416852.2			
		29475.6 (31) 46860.6.	29483.6@4146854.5	29491.4 (3) 46855.2	
	29464.4 (32)468.57.7	29476.8(3)46856.3	29489,5(2) 4684777	$29491.4(32) 46851.2$	
				$29 \pm 98.5(33) 46848.5$	
					50

$\stackrel{5}{5}$	29500				
E	$0-9.9$	10-19, 9	20-29.9	30-39,9	40-49, 9
2					
3					
4					
5		24518.5才, ${ }^{\text {(6) } 47062.0}$			
6		29516.35.3. 6 47060.5		295379@47075.6	
7	29500.0 (747050.80	$29513{ }^{\circ} 9$	29527.6 (7) 47061.6	295379047026	
8	29504.0 (8)47041.0	29570.4 ${ }^{8}{ }^{47038}$	295210 (79147056.7	29535i6 $6^{2}(8) 47054.1$	${ }^{\circ}$
9	2950500197015.0	29517.49397030 .4			
			79512.09747025.0	24535.9(1) 47044.5	
$\begin{aligned} & 10 \\ & 11 \end{aligned}$	29500. 0 (1) 46.9717	29512.5(1) 47004.3		29534.) (1)47030.6	29549.1 (1)47026.2
12	29500. 5 (124)46962.3	295/2.5 (1) 47009.3	29520.0 (1) 47000.9		29545.0 (1247003.0
13	29500.0(12) 46960.0				$29545.0 \sqrt{13} 46990.0$
14					29541.7 (13) 46988.5
15			$29528.8)(3)+69613$	62531.8(15) 469740	29540.5(10)46960.0
16	29502.0 (6)46929.0			29534.8(1) 46955.8	27540.704676956
17					29543.3 (17)469592,2
18	29502.2. ${ }^{2} 1846944.4$		$29522.2(18) 46944.4$		29549.0 (1746957.0
19				29530,9(19)46936.2	
20					
21				,	29542.0 (1)46931.0
23					
24					
25					
	29502.0 (26)46890.0				$29542.5 \sqrt{20} 46898.1$
27	29508.9 (27) 46886.8				
28					$29.542 .6(27)+6897.9$
29				29538,3(29)46875,0	
30					
31		29511.0 (31)46872.9		$29532.7(38) 46869.3$	
32					
33					
3					
36					
37					
38					
39					
40					
41					
42					
43					
44 4 4					
45					
47					
48					29540.0 514846822.94
49					
50					

29600					
$\underset{\sim}{4}$	0-9,9	10-19.9	20-29, 9	30-39, 9	40-49, 9
2					
3					
4		29619.4 (4)47068.4		296343 () 470748	
5		29618.4(4) 47066.4		29630.5 ${ }^{1} 47070.5$	
6					29649,45, 47064.1
7	29605.2(7) 47056.5		29627.8 ${ }^{29}$	29635.36 4 4 7069.2	29645,56 517068.2
8	29602.2.947056.5		29623, 7.74447058 .7	2967hi4 (4)47063.0	
		29619.0 08.847052 .0			29645iot 47065.3
9		29610.0 (9) 47046.0	$29620.0 \bigcirc 47045.0$		$29649^{6} 14772063.5$
10		29616.89 (9) $47044^{2} 1$			
11		$29613.0(10) 47043,2$		29638.8(11)47043.8	
12					
13					
14	29605.0(14)47011.0				
15			$29621.1(15) 47014.3$		
16			29620.1(16) 47002.0		
17			$29630.2117146993 .6$		
18	29603.9(1) 46972.5		29620.1(1)46993.4		296417 (18)46988.5
19	29600.0 (19)449959,5		29620.5(1)4499515	$29630.5(19)+6970.5$	2964178
20				$29637.5(12) 46959.3$	$29640.5(20 \%) 46943.5$
21	29100.0 (0146935.0	29612.0(11) 46.945 .0	29620.3) 31446944.3	29639.5 (1) 46945.0	22640.580846943 .5
22	29608.0 (3)469278	29610.008 +69.39 .5			
23					
24					
25					
26					
27				29630.4 27)46889.3	$2 9 6 4 1 . 7 \longdiv { 2 7 } 4 6 8 8 8 . 5$
28	29600.0 (28)46876.2			29630.4 4 246889.3	29641.76046888 .5
29					
30					
31					
32					
33					
34					
35					
36					
37					
38					
39					
40					
41					
42					
43					
44					
45					
46					
47					
48					
49					
50		29616.0 (64) 4.809 .01			29647208467991

	29800				
$\stackrel{1}{4}$	0-9.9	10-19.9	20-29, 9	30-39.9	$40-49.9$
	29809.5(8)47078.0		29829.2()47103.19	29831.7847104 .2	
2	29801.9 477078.9				
3	29807.0 847076.0				
4	298020(8)47076.0				
5					
6					
7					
8					
9					
10		29815.5 (1) 47058.1			
11		29815.8 (10) 47049.4	29826.4 (1) 470.50 .2		29847.8(1)47049.8
12	298070(12)47035.0			29838.4(13)47031.0	$29840.0(13) 47040.0$
13	29804.6(12)47031.7				
14					
15		29818.6 (5)47012.6			
16					
17		A1RFRANE (17)47013:\%)	$129827.697747016 .32$		
18			$29822.5(18) 47012.5$	29838.4 (18) 46994.7	
19		29813.7 (14) 46964.0	298.2.4.2(1) 46961.2		
20			29821.8(20) 46943.4		
21					
22					
23					
24					
25					
26					
27					
28					
29					
30					
31					
32					
33					
34					
35					
36					
37					
38					
39					
40					
41					
42					
43					
44					29843,8(4)46843.8
45					
46					
47					
48					
49					
S0	89802.2(53)46824.1		29820.2(52)46824.1		

